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ADVANCES IN M[JLTIATTRIBUTE UTILITY TI~EORY

Peter H. Farquhar
Harvard University

Abstract

Several advances in multiattribute expected utility theory have
emerged recently. Much of the existing theory deals with independence
axioms on whole attributes and the corresponding utility decompositions .
This paper reviews three al ternate approaches for obtaining representations
of multiattribute utility functions: (1) multivalent preference analysis,
(2) approximation methods , and (3) spanning analysis. Unlike some utility
decompositions, these approaches require the assessment of only single—
attribute functions which makes implementation relatively simple. Only
multivalent preference analysis and spanning analysis, however, provide
axioms that can be empirically tested to justify a particular utility repre-
sentation.

4
1. INTRODUCTION

V The primary aim of utility analysis is the construction of mathema— 
V

tical representations of preferences that can aid in the evaluation of risky

decisions. For several years, research in multiattribute expected utility

theory has focused on the decomposition approach . This approach relies on

various sets of independence axioms to prescribe how to divide the assessment

of a multiattribute utility function into manageable components.

Though it is typically much easier to apply than a holistic analysis

of preferences, the decomposition approach sometimes requires substantial
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effort from the decision maker. He must check the validity of different

independence axioms and then assess the requisite conditional utility func-

tions and scaling constants to obtain a utility decomposition. As the degree

of interdependency among attributes increases, the effort needed to implement

V decomposition methods grows rapidly.

One can argue tha t the effort needed to represent some multiattribute

preferences is not necessarily a reflection of inadequacies in the decomposi—

tion approach but rather an indication of the inherent complexity of particular

decision problems. Nevertheless, there are many opportunities for improving

V the testing and assessment methods used in decomposing multiattrlbute utility

functions.

This paper briefly reports on three emerging directions in multiattri—

bute utility theory that appear to offer advantages over traditional decomposi-

tion methods whenever the attributes are interdependent. Section 2 reviews

some independence axioms and utility representations to illustrate the decom—

position approach, Section 3 examines recent research on multivalent preference

structures, Section 4 looks at approximation methods for multiattribute utili~v

assessment, and Section 5 considers new results from spanning analysis. V

2. UTILI TY DECOMPOSITIONSV ~~~=V ~~VV V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘
V Term1nology~

• Let X denote the outcome space in a decision problem, and let P denote

the space of all simple probability distributions (lotteries) over X. Let )

denote a preference order on P satisfying the von Neumann-Morgenstern axioms

(13, 34~. Thus there exists a real function u on X, called a u t i l i f ,  fuiz t~~~

_ _ _ _  

_ _  
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for >. on P , such that for all p, q c P, p > q if f (if and only if) *

~~~~ 
p (x)u(x) > ~~~~ q(x)u(x).

For simplicity let X Y X Z , where Y and Z are attr ibute sets each

containing at least two elements. P,~ denotes the set of all lotteries on Y.

The (single—element) condi tiona l preference order > induced on P~, by the

preference order > on P and a fixed element z C Z is defined by

~~ > q.~ i ff  ~~~ z) > (q~
, z ) ,  (1)

where p~ , q~ C P,~.

Pollak [30], Keeney [22—26], Raiff a [31], and others have used the

following independence axiom to derive various utility decompositions.

~~~INITION_1: Y is utility independent of Z , denoted Y(UI)Z, if f there exists

a preference order >1 
on P~ such that > >~ 

for all z c Z.

Thus Y(UI)Z implies that preferences for lotteries on Y conditioned on a
j

fixed element in Z do not depend on the fixed element. An analogous defini-

tion holds for Z(UI)Y.

V utility decomposition with two attributes

Since von Neumann—Morgenstern utility functions that preserve the

same preference order are related by positive linear transformations tl3],

Y(U I)Z implies that for all y C Y , a c Z ,

u(y, z) = ci(z) + ~(z)u (y,  z0) , (2)

where is fixed arbitrarily in Z, and ‘x and B are real functions on Z

with 8’O.

~~~~~~~~.-— 
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— 4 —

Y is essential if f > ~ 4 on P~ for some a C Z. In this case there

exist y0, y1 C Y and a rescaling of u such that u(y0, a0) = 0 and u(y1, z0) = 1.

Solving for ~ and B in (2) therefore yields [23]

u(y, z) = u(y
0 , a) + [u(y 1, a) — u(y0, z) ] u(y, z

0
) ,  ( 3)

for all y C Y, z C Z. Hence one conditional utility function on Y and two V

conditional utility functions on Z determine u when Y(UI)Z and Y is essential.

(If Y is not essential, then u(y, z) = u(y
0
, a) trivially.)

The partial decomposition in (3) is replaced by a stronger result

when Y and Z are mutually utility independent [22, 24).

T~~~~~~j:~ Suppose that u is a von Neumann—Norgenstern utility function on

Y X Z, where Y and Z are both essential attributes. Let u be scaled so that

u(y0, a0) 0, u(y0, z1) ~ 0, and u(y1, a
0
) ~ 0. If Y is utility independent

of Z and Z is utility independent of Y, then u has a quasi-additive decorn~osi-

tion ,

V u(y, a) = u(y, z
0

) + u(y0, z) + cu(y, z
0

) u(y0, z) ,  (4)

where c is a scaling constant defined by ‘

V

c [u(y1, z1) — u(y0, z1) — u(y1, z0) ]  / u(y0, z1)u(y1, z
o). (5)

Equation (4) yields the familiar additive decomposition u(y, a) =

u(y, a
0

) + u(y0, a) if c 0 in (5) [12, 30]. On the other hand, (4) gives

a multiplicative decomposition u’(y, z) = u’(y, a ) u’(y0, z), where

u’ E 1 + cu, if c ~ 0 in (5) [25, 30].

“
V

.

~~~~— 
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Decompositions with n attributes

Suppose the outcome space is X = X X X for n � 2. Let N

{l , ..., n} be partitioned into nonempty sets I and I, and let denote the

Cartesian product of the X~ for all I C I. Then the definition of utility

independence is easily extended with Y and Z E X1.

Keeney [25, 26], Nahas [291, and others derive decompositions from

various collections of utility independence assumptions on subsets of attri— 
V

butes. For example, if X1
(UI)X

1 
for all subsets I~~~N, then u has an additive

or a mul t iplicative decomposition on n attributes. Other decompositions based
V 

on utility independence assumptions are discussed in [26 , 29]. V

In some decision problems , utility independence does not hold because

preferences for lotteries on Y indeed depend on the particular elements fixed

V in Z. Fsrquhar [4 — 7] describes a fractional hypercube methodology for

generating different independence axioms and their corresponding tnult lattri-

bute utility decompositions. One advantage of this methodology is that it 
V

provides a hierarchy of utility models ranging from the additive mode]. to

forms tha t represent increasingly complicated preference interdependencies V

among attributes. These interdependencies are reflected b y interaction terms

in the functional form of the utility decomposition. If the interaction

terms are products of single—attribute functions (as in (4) ,  “or example) , the

decompositions are relatively easy to assess; on the other ~~~~ the presence

of nonseparable interaction terms complicates the assessment. Therefore appli—

cations have been limited primarily to the simpler types of fractional hyper-

cube decompositions.

Detailed reviews of multlattribute utility decompositions and inde—

pendence axioms are provided in (7, 19, 26].

~~~4~~~~ V t V V ’  V “~ -~~~~~~WL,!~ 4.-,4 V~
.uv-q,

~ i.,, r 
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V 
Comments

A disadvantage in implementing the decomposition approach is that no

independence axioms will be verified in some decision problems. This situation

arises if for some reason it is undesirable to conduct independence tests or

if certain axioms are tested and subsequently rejected . Each collection of

independence axioms yields a particular utility decomposition, but in the V

absence of any empirical verification one must guess at the form of the utility

function. One solution is to consider the approximation of an unknown or

partially characterized utility function by different approximating forms . 
V

Another possibility is to develop axiomatic procedures which produce multi—

attribute utility representations without the use of at tr ibute independence

axioms . These issues are addressed in the following sections .

The decomposition approach works well when preference interdepen—

dencies have simple forms [8]. For examp:te , the addi t ive and mul t iplicative V

representations have received wide application in u t i l i ty  analysis (26 1.  The 
V

research outlined in succeeding sections , however , focuses on m’c~t ,ods fo r

dealing with more complicated preference structures. VI

I

3. MULTIVALENT PR RENCE ANALYSIS

Introduction 
V

One approach in describing how preferences for lotteries on Y depend V

on elements in Z is to partition Z according to the distinc t conditional pre-

ference orders induced on P.r. Farquhar [9] introduces the following definition.

__________________ 
_ _ _ _  

__IH
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The multivalent preference structure of Y given Z is defined

by (Y , 
~z ’ [Z]) where for some nonenipty index set ~, ‘V

V E { 
~~~~~ j C ~ 

} denotes a collection of

distinct preference orders, called base orders , on

P~ ; and

(ii) [Z] j C ~ } denotes a partition of Z into 
V

nonempty classes, called orbitals , such that > = >~

for a l l z c Z 3 a n d j c ~~ . V

Note that two elements z’ and z” in Z belong to the same orbital if f 
~~ 

= >,,,
onp y. V

Valence refers to the cardinality of [Z] in the preference structure

(“i, 
~~‘ [Z]) .  At one extreme , the preference structure is univalent if

V [ZI = {z}; Y is utility independent of Z in this case. At the othe r extreme , 
V

complete dependence of Y on Z occurs if [Z] consists of all single—element

subsets of Z. Thus multivalent preference structures cover an entire spec—

trum of interdependencies between attributes .

Since Y is utility independent of the restriction of Z to Z for  all

orbitals Z C [Z] ,  a natural generalization of Definition 1 Is
V V~~

V 

‘ 
DEFINITION 3: Y is multivalent utili ty independent of [ ZI ,  denoted Y(Ul)[Z],

if f there exists a collection of base orders such that Y given Z has the V

multivalent preference structure (Y, ~~ [2]).

- 
4,

~~~~~~~~~V h .
V V 

- 

.
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An analogous definition holds for Z(UI)[Y1.

Multivalent utility representations

Farquhar [9] establishes the following representation theorem for

- 
multivalent preference structures involving two attributes (see [4, 28) also).

THEOREM ~: Let u be a von Neumann—Morgenstern utility funct ion on the outcome

space Y x z• Suppose Y is multivalent utility independent of (Z] and Z is

multivalent utility independent of [Y]. Then there exist real functions

and 
~l 

on Y with 
~l 

> 0, real functions 
~2 

and on Z with 
~2 

> 0 , and

constants k depending on the sets X Z, where c [Y] and Z C [Z], such that

u has one of the following additive-multiplicative representations for all 
V

y c Y a n d  zc  2:

I

V u(y, a) = + a
2(z) + uG, ~~~~, (6a)

~~~ a) = 
~1
(y) + ~1(y)u(~ , ~

) ,  (6b)

u(y, z) = 
~~~~~ 

+ ~2 ( t ~ y ,  ~) ,  (6c)

u (y, a) = + B1(y)82(z)(u(, ~) 
- 

~ 1. (6d)

The assessment of the multivalent representations above is compli-

cated by the number of conditional utility functions required to determine

the ci and ~ functions. However , vas t simplification is possible with the

following assumption.

•~~ ~~~ 
— 

- 

/
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EFIN IT 1ON 4: For y0, y1 
c Y, y1 is wziformti~ ;V ~~LV i

~~
.
~~~zi,le to y0 , deno t ed

y1 >‘>y0~ 
iff (y1, z) > (y0

, z) for all z c Z.

An analogous definition holds for z
~~>>.

z
0
. Farquhar [91 shows that when

y1>> y0 and z1 >.) z~ in Theorem 2, u is completely specified in (6) by two

conditional utility functions on each attribute, u(y0, z), u(y1, z), u(y, z0
), 

V

u(y, z
1
), and the utilities assigned to (

~ , ~) c Y x z for each Y c [Yl and

Z c [2] .

Further results

The additive—multiplicative representations in Theorem 2 can be

extended from two attributes to n attributes if certain uniform preferability

assumptions are made. Other n—attribute representations can be derived from

multivalent utility independence axioms [9 , 10].

Instead of using conditional preference orders to determine the

orbitals in [Z], one can obtain the same partition using equivalence relations.

P I ~~~~~ Zj~~: The relation utility equivalence (IJE) on Z is defined by

z’(UE)z” if f there exist constants a and b with b > 0 such that

u(y, a”) a + bu(y,  z ’) for all y c Y. (7)

Since z’(UE) z” 1ff )‘., >,, , the equivalence classes generated by (tJE) are V

the orbitals in (Z] above.

_  

V. ~~~~V V V V V V _

~

—-  

~~~~~~~~~~~~~~ V V  

V 

V
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Farquhar and Fishburn [10] define equivalence relations leading to

multivalent forms of additive independence, utility independence, and fractional

independence. These axioms generate a variety of multivalent representations of

multiattribute utility functions.

Comments

V The valence approach for assessing multiattribute utility functions

partitions the elements of each attribute into equivalence classes, called

orbitals, such that preference orders conditioned on the elements within each

orbital are identical. Unlike decomposition methods that use independence

axioms over whole attributes, the valence approach considers multivalent

independence axioms for which particular independence relations hold on the

restriction of each attribute to any of its orbitals. Since preference

interdependencies among attributes are reflected primarily by the orbitals ,

attribute interactions are readily interpreted and the functional forms of

the utility representations are kept simple. The valence approach not only

subsumes decomposition methods, it also produces representations for pre— 4
ference structures not covered by previous methods.

The power of Theorem 2, for example, is that ~~~ two—attribute utility

function can be represented by the additive—multiplicative forms in (6). As

attribute interdependencies grow, however , the number of subspaces Y X Z

increases accordingly. Similar, but less powerful, results hold for n-attribute

utility functions. Further research is needed to refine the procedures for

V eliciting a decision maker’s partition of the elements in each attribute .

before applications of the valence approach can be judged . Areas of potential

application of multivalent preference structures are suggested in (4, 9, 11, 28j.

I ~~ - 
- 

- 
_ _ _ _ _ _ _ _ _- - -—
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4. APPROXIMATION METHODS V

The comments at the end of Section 2 indicate that in multiattribute

utility analysis (1) independence axioms sometimes are not checked, and V V

(2) decompositions involving only single—attribute functions are relatively

easy to assess. These practical considerations have led to the study of

app roximation methods for multiattribute utility assessment.

For example, an additive function is used in many evaluation problems

without any axiomatic justification. Considerable experience has shown , how—

ever, that additive models frequently give satisfactory results. in a review

of interaction effects in inultiattribute utility representations, Farquhar [8~i

describes behavioral research on (additive) approximations. Additional

references are cited there. The presentation here covers recent mathematical

investigations.

‘V Approximations using interpolation

If Y is essential and utility independent of Z, then (3) holds. This

equation can be rewritten as

u(y, z) = p(y)u(y1, a) + (1 — p(y))u(y
0

V, z), (8) 
V

where p(y) E u(y, z
0

) ,  for all y c Y and z c Z. Keeney [24, pp. 284—285 1 
V

interprets (8) as interpolation between two conditional utility functions,

u(y
1, 

z) and u(y
0, 

z).

One can begin with interpolation like (8) as a postulate and derive

utility representations without resorting directly to independence axioms.

I
V 

--V
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For example, Bell [1 — 3] defines a normalized conditional utility function V

u(z~y) [u(y, a) — u(y, a
0
)] I [u(y, 2

1
) — u(y, z

0
)], where it is assumed

z
1 >> a0

. Then Z is interpo lated by Y if there exists a real fuuction 0 on Y

such that 0(y
0
) = 0, O(y1

) = 1, and

u(z~y) = e ( y ) u ( z I y 1) + [1 — 0(y)] u(z~y0), (9)

for all y C Y and z C Z. Analogous definitions hold for u(y~z) and Y inter-

polated by Z whenever y
1 >>y0

. Bell [2] proves the following interpolation

result.

THEOREM 3: Let u be a von Neumann—Morgenstern utility function on the out—

come space ‘i x Z. Suppose there exist y
0, y1 

E Y and Z0, 21 
C Z such that

y1 is uniformly preferred to y0 
and z

1 
is uniformly preferred to z~ . Then

Y is interpolated by Z and Z is interpolated by Y if and only if V

u(y, z) = a
0 

+ a
1
u(y~z0) + a2

u(z~y0) 
- ku(y~z0)u(z~

y
0)

+ (k - a1
) u (y~z0) u (z~y1) + (k - a

2)u(y}z1)u(zIy0)

I
+ (a12 — k ) u (y I z 1)u(z~y1) ,  (10)

where k is an arbitrary constant, a
0 

u(y0, zo
) ,  a

1 
u(y1, z

0
) ,  a

2 
E

u(y0, z1
), and a12 u(y

1, 
a
1
), for all y C Y and a c 2.

The interpolation result in (10) requires the assessment of four

single—attribute conditional utility functions and several scaling constants.

This result is comparable to the multivalent representation In (6) with

—~~~ 

~~~~~~~ ~~~~~

— 
-. ~ 
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uniform preferability assumptions.

Tamura and Nakamura [32, 33] refer to (9) as f i rst-orde r convex

dependence . A natural extension of the interpolation idea in (9) is given by

DEFINITION 6: Z is m-th order convex dependent on Y , denoted Z(CD~)Y, 1ff

there exist distinct y0, y1, ..., y c Y and real functions (~~~~ , ..., 0 on ~
‘

V 
such that O

1(~~
) = 5

ij (Kronecker ’s delta) for i c il , ..., m} and

j c {o , 1, ..., m} where

m m
u(a~y) = [1 — 

~~ 01
(y)}u(zfy0) + ~ 0.(y)u(z~y), (11) 

V

i=1 j
~~~

3 
V

for all y c Y and a c Z , where m is the smallest nonnegative integer for

which (11) holds.

This definition leads to a grid of conditional utility functions from which

utility approximations are determined by interpolation results similar to (10).

Nahas [29] describes an interpolation methodology based on continuous

cuts which incorporates a major portion of the above research. The methodology

considers approximations to u’(y, a) of the form

f
1

(y) u(y1, z) + ... + f (y)u(y , z) , (12)

where f1, ..., f are real functions on Y and y1, ..., y are fixed in Y.

Nahas focuses on properties like separability , risk, and sensitivity’ in
V 

developing utility approximations. Unfortunately, his work remains unpublished.

V The interpolation results for two attributes have been extended to

_ _ _  

_ _ _ _ _  VVJ
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an arbitrary number of attributes , but these extensions are not addressed

here [1, 3, 29, 32, 33).

Further results on app~oximation

A basic issue in approximation theory is the degree of error involved 
V

in using various approximating forms. Fishburn [16, 17] examines this Issue

for the uniform norm and approximations to a continuous u(y, z) of the form

+ ... + f~(y)g~(z)~ where each function may involve one or more

conditional utility functions or may be specified in a way that does not

depend on u (cf., (11), (12)). Fishburn considers a number of elementary

approximations based on additive, multiplicative, and other simple forms that V

yield exact results when certain independence axioms hold. He examines more

general approximations using different types of linear interpolation and exact V

grid models. Many of these results relate to the approximation methods dis- 
V

cussed above.

Comments

A major advantage of the utili ty approximation methods proposed by

Fishburn [16, 17], Nahas [29] , Bell El — 3], Tamura and Nakamura [31, 32],

and others is that only single—attribute functions are used in the utility
a
V representations. Although such representations are comparatively easy to V

assess , the particular form of a representation depends on interpolation

assumptions that are not directly testable. If the requisite assumptions

cannot be empirically verified, the corresponding representations must be re—

V garded as approximations to a multiattribute utility function. The goodness

t

V 
V V V , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of the approximation, of course, is a central issue in using these methods.

The approximation approach also includes preference regression, worth assess— V

ment, and other topics reviewed in [7, 8, 21, 26 , 27).

5. SPM~NINc ANALYSIS V

Let I denote a decision maker ’s indi fference relation on lotteries

V over Y )~ Z. The conditional indifference relation I(y) induced °“ ~~~ 
by

the indifference relation I and a fixed element y c Y is defined by V

r~ ~(y) ~z 1ff (y, 
~~ 

I (y, q
2), (13)

where p
~
, C~

7 
C

V Fishburn and Farquhar [181 introduce the following fundamental exten—
V sion of utility independence.

VP~FINITI0N 7: 2 is degree—n utility independent of Y, denoted Z(UI )Y, 1ff

Y contains a nonempty subset A with n elements , such tha t A is

(i) independent: ( !% I(y)~~~I(y*) for all y* C A , and V

yCA ”% {y *}

(ii) spanning : V Cl 1(y) = Cl 1(y).
yEA ycY

V The terminology above suggests certain analogies with the theory of linear

V 
vector spaces. Fishburn and Farquhar also give a procedure for determining

independent spanning sets in Y.

V V .
~~

: V:: T~~~~~~~~~~~~~~~~~~::
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Z is generalized utility independent of Y [15, 19, 201 1ff Z(U11
)Y.

Finite—degree utility independence leads to several ijew utility representation V

V 

theorems [18).

THEOREM 4: Let u be a von Neumann—Morgenstern utili ty function on the out-

come space Y X ~~, where Y and Z are both essential attributes. Then Z is V

degree—n ut i l i ty independent of Y for a positive integer n iff there exist

real functions f1, ..., f , a on Y and real functions g1, ..., g on Z such 
V

that 
V

u(y, a) = f
1(y)g1

(z) + ... + f (y) g (z) + a(y) , (14)

for all y t Y and z £ Z, and such that the s um—of—product s r cpPe sentatw~
in (14) is valid for no positive integer smaller than a.

Theorem 4 implies that if Z(UI )Y, then Y(UI )Z where n—m i ~ 1.

The sum—of—products representation in (14) thus leads to

V ThEOREM S: Let u be a von Neumann—Morgenstern ‘Vi t i li ty  function on the out-

come space Y X Z, where Y and Z are both essential attributes . If Z is

V degree—n utility independent of Y with independent spanning set ~y1, ..., v )

V C Y and if Y is degree—rn utility independent of Z with independent spanning
V 

set (z1, ~~~ 
zm

} C Z , then u has a multiadditive representation given by

1± 
- - - - 

)
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k
n m

u (y,  a) = a
00 + a 

0
u(y

1
, z) + ~ a0.u(y, z )F 1=1 j=i j

n ii
+ I a~~u(~~~ z)u(y, Z

j
)~~ (15) V

i=l j=l

V for all y £ Y and z C Z, where the ajj’s are scaling constants.

The multiadditive representation in (15) requires n + m single—attribute V

conditional utility functions and at most (n+l)(m+1) scaling constants to

assess u(y, z). This representation generalizes the quasi—additive decom—

position in (4) and provides an axiomatic basis for interpolation results

such as (10), (11), and others.

~~~~ents
‘ V

Spanning analysis appears to offer several advantages in multi-

attribute utility assessment. This approach provides (1) one functional V

representation for the entire outcome space (unlike multivalent preference

analysIs), (2) a set of testable axioms (unlike approximation methods), and V

(3) the assessment of only single—attribute conditional utility functions

(unlike some utility decompositions). The utility representations are derived V

from axioms which use conditional indifference relations to construct so—called 
V

independent spanning subsets of each attribute.

V It is too early to judge the usefulness of spanning analysis. Fur—

ther research and applied studies should answer this question.
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